mercoledì 31 gennaio 2024

262. Spirali

Una spirale, in matematica, è una curva che si avvolge attorno a un determinato punto centrale, avvicinandosi (o allontanandosi) progressivamente.

In coordinate polari l’equazione più semplice si esprime come r = ϑ

Alcuni dei tipi di spirali bidimensionali più importanti includono:

La spirale archimedea:      r = a ϑ

La spirale di Fermat:          r = a ϑ1/2

La spirale iperbolica:          r = a / ϑ

Il lituo:                                 r = a ϑ-1/2

La spirale logaritmica:        r = a e

La spirale di Cornu o clotoide 

Per una lista più completa vedete qui: List of spirals - Wikipedia

Cominciamo dal famosissimo nautilus, un mollusco cefalopode, la sua sezione longitudinale della casa del Nautilus è la perfetta rappresentazione di una spirale logaritmica, ovvero una spirale che ripete all’infinito le proporzioni della sezione aurea, proprietà fondamentale per molti fenomeni di accrescimento.

Esistono poi altre tipologie di spirali, tra cui la spirale di Archimede, la cui distanza tra una spira e la successiva è costante; ne sono un esempio le ammoniti.

Nel regno vegetale: nel disco centrale dei girasoli si avvitano due spirali, una in senso orario e l’altra in senso antiorario.


L’elenco potrebbe continuare per diversi ordini di grandezza dall’infinitamente piccolo, quali la doppia elica del DNA, all’infinitamente grande, quali le galassie dell’universo, passando per uraganivortici marini.


Si possono osservare spirali logaritmiche nella disposizione delle foglie di alcune piante, definita come fillotassi o nell'ordinamento delle scaglie dell'ananas o nella disposizione delle foglie dell'aloe.

Nei gasteropodi: lumache, chiocciole.

Nell’apparato uditivo la chiocciola o coclea ha questa forma. che permette di percepire le vibrazioni prodotte dalle onde sonore.

Un esempio particolare di spirale logaritmica è la spirale Aurea dove la struttura, ingrandita, o rimpicciolita, conserva lo stesso aspetto; questa può essere bene approssimata dalla spirale di Fibonacci.



Passiamo ora ad alcuni casi dove 2 o più spirali si avvolgono insieme.

Il condensatore elettrolitico, ad esempio, è composto da due lamelle definite armature. Queste sono divise da un materiale dielettrico o isolante e hanno polarità negative e positive. Quindi il condensatore è molto simile a una batteria e può mantenere una carica accumulata. Infine, questa struttura viene arrotolata per contenerne le dimensioni.


È probabile che gli studi di Leonardo da Vinci, che all'epoca della costruzione del castello di Chambord si trovava presso la corte di Francesco I, abbiano influenzato alcuni elementi architettonici: infatti alcuni suoi disegni rappresentano dei progetti di scale a doppia elica, che permettevano agli abitanti del palazzo di salire e scendere le scale senza mai incontrarsi, come succede nelle scale mobili di metropolitane e centri commerciali.


Ho tenuto per ultimo l’esempio più interessante: il disco multi-solco (o multisided record), un tipo di disco in vinile che ha più di un solco per lato. Questa tecnica permette di codificare tracce nascoste su LP, 45 giri e 78 giri, su un disco dotato di multi-solco, se l'ascoltatore riproduce la traccia principale o quella nascosta dipende solo da dove viene inserita la puntina.


L'esempio più citato è l’album Matching Tie and Handkerchief dei Monty Python, pubblicato nel 1973. Un lato dell'album (entrambi i lati erano etichettati "Lato 2") era "standard"; l'altro conteneva una coppia di solchi, ciascuno dei quali conteneva materiale diverso.


Un altro esempio memorabile di registrazione multi-solco è il disco flessibile del 1980 intitolato It's a Super-Spectacular Day pubblicato nel Super Special della mitica rivista MAD. Il disco riproduceva una sezione introduttiva standard sull'inizio di una giornata meravigliosa e "super-spettacolare", quindi produceva uno dei numerosi finali "cattivi" comici di quella giornata, coinvolgendo argomenti come il rapimento alieno, i brufoli, la violenza di strada e gli orrori di una suocera in visita. A metà disco, dopo l'allegra intro, i solchi extra prendevano il sopravvento. C'erano 8 scenari in totale e quello riprodotto dipendeva dal solco con cui la puntina entrava in contatto in modo totalmente casuale.



List of spirals - Wikipedia

Multisided record - Wikipedia

Fate as the DJ: Parallel Grooves | Kempa.com

https://www.reddit.com/r/Vinyl_Jazz/comments/k1pt41/parallel_grooves/?rdt=63556

Castello di Chambord - Wikipedia

Mathematical Spirals | Renaissance Universal (wordpress.com)

ajams7(2)66-76.pdf (arpgweb.com)

Zibaldone Scientifico: 222. Paralipomeni e DNA (zibalsc.blogspot.com)

Zibaldone Scientifico: 89. Ottantanove (zibalsc.blogspot.com)

Zibaldone Scientifico: 225. Spirale di Teodoro (zibalsc.blogspot.com)

                                                       Lossodromia - Wikipedia

 

giovedì 11 gennaio 2024

261. Doomsday

Il 2024 è un anno bisestile. Per definizione 1 anno ogni 4 lo è (a questa regola fanno eccezione gli anni “00”, in questi casi si applica lo stesso calcolo al secolo, per esempio, il 2000 è stato bisestile e il 2100 non lo sarà).

All’interno del secolo, abbiamo una ripetizione dello stesso calendario solo ogni 28 anni.

Per riutilizzare il calendario (o l’agenda) bisestile di quest’anno dovremo aspettare 28 anni, in questo secolo in totale 3 volte: 20242052 e 2080.

Per essere precisi anche questi 3 anni avranno qualcosa di diverso: la data della Pasqua.

http://zibalsc.blogspot.it/2013/03/118-e-la-data-della-pasqua.html

Nel calendario gregoriano la Pasqua è una festività mobile e la sua data varia di anno in anno perché è correlata con il ciclo lunare.

La regola che fissa la data della Pasqua fu stabilita nel 325 dal Concilio di Nicea:

la Pasqua cade la domenica successiva alla prima luna piena dopo l'equinozio di primavera (il 21 marzo).

Di conseguenza essa è sempre compresa nel periodo dal 22 marzo al 25 aprile.

                             ---------------------------------------------------------------------------------------------

 

Quest’anno il Doomsday sarà di Giovedì.


Come visto nel post 202 (e nei precedenti 3092109132 e 172) alcune date, semplici da ricordare, hanno in comune lo stesso giorno della settimana (Doomsday).

Questa regola è stata evidenziata dal matematico inglese John Horton Conway.

Quest'anno saranno Giovedì:


- nei mesi pari il 4/4, il 6/6, l’8/8, il 10/10 e il 12/12

- nei mesi dispari il 7/3, il 5/9, il 9/5, il 7/11 e l’11/7.

Per i mesi dispari si ha sempre che la differenza tra giorno e mese è uguale a 4.

In aggiunta ai giorni elencati sopra, sono Doomsday anche:

-       l’ultimo giorno di Febbraio (anche se l’anno è bisestile)

-       il 25 Aprile
-       Ferragosto       (15 Agosto)
-       Halloween        (31 Ottobre)
-       S.Stefano         (26 Dicembre)

 

Lo è anche l’anniversario della nascita di Albert Einstein (14 Marzo) famoso come Pi Day, giorno dedicato a pi greco, per la grafia anglosassone del numero 3.14

Anche il 26/12 compleanno di Conway è il giorno del Doomsday.

Uno dei metodi per calcolare il Doomsday è di sommare le ultime due cifre dell'anno al quoziente intero della loro divisione per 4; al risultato si deve sommare il coefficiente del secolo, che per il periodo dal 1900 al 1999 corrisponde a 3, mentre dal 2000 al 2099 è 2.

Ad esempio, per il 2024 si ottiene:

24 + int(24/4) + 2  =  24 + 6 + 2  =  32  (modulo 7)  =  4 (Giovedì)


http://en.wikipedia.org/wiki/Doomsday_rule

http://www.ilpost.it/mauriziocodogno/2010/12/20/calendario-perpetuo-mentale/
http://rudy.ca/doomsday.html
https://it.wikipedia.org/wiki/Calcolo_della_Pasqua

Zibaldone Scientifico: 202. Doomsday 2016 e Calendari (zibalsc.blogspot.com)