domenica 12 novembre 2017

237. Kaprekar


Nel 1949 il matematico indiano Dattaraya Ramchandra Kaprekar mise a punto un processo oggi noto come operazione di Kaprekar, che venne pubblicato su Scripta Mathematica (n. 15, 1949).  
Si sceglie un numero di 4 cifre dove le cifre non siano tutte uguali (come 1111, 2222, ecc.) e neanche che 3 siano uguali tra loro e la quarta differisca di un’unità; quindi si ridispongono le cifre per ottenere il numero più grande e quello più piccolo che si possono comporre con queste 4 cifre. Infine, si sottrarre il numero più piccolo dal più grande per ottenere un nuovo numero e si continua ripetendo l'operazione per ogni nuovo numero.
Ad esempio, se si parte da 2017 si ottiene:


7210  -  0127  =  7083

8730  -  0378  =  8352

8532  -  2358  =  6174

7641  -  1467  =  6174


e per ogni numero di 4 cifre si arriva a 6174; tutti i numeri raggiungono 6174 in un massimo di 7 passaggi. La maggior parte dei numeri converge con 3 passaggi:







Deutsch e Goldman (nel 2004) hanno fornito questa interessante rappresentazione grafica:




Una situazione simile si ottiene con 3 cifre, ma in questo caso la chiave a cui si arriva è 495. In funzione del numero di cifre, si possono avere 1, nessuna o più chiavi:



Ma cosa si ottiene cambiando la base del sistema numerico?

Una bella trattazione la potete trovare qui.
Nella seguente tabella vengono riportati alcuni esempi con numeri fino a 5 cifre:



 







 

Nessun commento:

Posta un commento